菜单总览
— 优秀师资 —

戴建岗

职位:

校长讲席教授(共同院长)

教育背景:
  • 博士 (Ph.D.) 1986-1990: 美国 斯坦福大学 数学专业
  • 硕士 (M.S.) 1982-1985: 中国 南京大学 数学专业
  • 学士 (B.S.) 1978-1982: 中国 南京大学 数学专业
研究领域
应用概率:流体模型,扩散模型,随机过程,和强化学习;随机处理网络中的动态资源分配和优化及在半导体晶圆生产线,通信网络,数据中心,和服务系统(客户呼叫中心,打车平台,航空公司,和医院等)的应用。
Email

jimdai@cuhk.edu.cn

个人简介:


戴建岗,男,生于1962年,美国康奈尔大学运筹学与信息工程系Leon C. Welch讲席教授。1982年,1985年分别获南京大学数学系学士,硕士学位。1986年赴美国斯坦福大学深造并于1990年获数学系博士学位。1990年加入乔治亚理工学院,1998年晋升为正教授,2007年受聘为Edenfield讲席教授,直到2012年加入康奈尔大学。2002年首批加入由朱镕基、李岚清提议创建的清华大学经济管理学院特聘教授组,任职至2018年七月。2009-2011任新加坡国立大学James Riley杰出访问教授。戴建岗教授目前是数学统计学会(Institute of Mathematical Statistics, IMS)和运筹学与管理科学学会(Institute for Operations Research and Management Science, INFORMS)的会士(Fellow)。

戴建岗教授是国际上运筹学研究的引领学者。他的主要研究方向是随机排队网络。这些数学模型用来帮助设计、控制和优化各种复杂动力系统,包括半导体生产线、数字通信网络、大型数据中心、呼叫服务中心、医院病人流量管理和打车平台等。这些系统的共同挑战是如何对有限的系统资源进行有效管理以应对多变的和不确定的需求,并提供最优的服务。他指导的大多数博士研究生毕业后都在国际知名大学任教。

戴教授1995年发表于应用概率领域顶级学术期刊《Annals of Applied Probability》上的论文开创了一个流体模型研究工具,用来判断组织的运营策略能否使系统达到最大产出率。这个工具引领了世界上学者在多个相关方向的研究工作,这篇论文也成为该期刊创刊以来的最高引论文。戴教授因该论文荣获1996年Sigma Xi 最佳论文奖和1997年INFORMS应用概率学会颁发的最佳论文奖。这个工具不仅使理论研究有了飞跃跨进,也带来了很多实际影响。比如戴教授及其合作者发现了在随机排队网络中普遍存在的虚拟瓶颈现象,并且发现在Intel等半导体生产线也存在这种现象。近些年,戴教授的研究扩展到了以人为中心的服务系统,包括呼叫中心、打车平台、医院病人管理等。

戴教授凭借其卓越的学术成就和影响力,荣获1994年美国国家科学基金会的青年科学家奖(Young Investigator Award,其前身是美国总统青年科学家奖)和1998年INFORMS应用概率学会颁发的Erlang奖。2017年,戴教授因为其在随机系统稳态扩散逼近方面的研究再次荣获INFORMS应用概率学会颁发的最佳论文奖。他是迄今为止荣获两次INFORMS最佳论文奖的唯一学者。戴教授应邀在世界各地做过150多场学术报告,在2012年的INFORMS年会上,他受邀做了马尔可夫讲座。

戴教授自2012年以来,一直担任国际学术期刊《Mathematics of Operations Research》的主编。作为INFORMS的旗舰刊物之一,该期刊发表运筹学领域的顶级基础性研究成果,论文作者包括Robert Aumann、Roger B. Myerson、Alvin E. Roth、Lloyd S. Shapley等诺贝尔奖获得者。在戴教授的领导下,该期刊在2018年开辟了一个新的研究领域——“学习理论”(learning theory),吸引了人工智能、信息理论、运筹学和统计学等交叉领域的学者和研究人员。虽然该期刊已经创办50多年了,但这是该期刊历史上增加的第二个新研究领域。


学术著作:


1. J. G. Dai and Pengyi Shi, Inpatient Overflow: An Approximate Dynamic Programming Approach, Manufacturing & Service Operations Management, accepted for publication, January 2018.

2. Anton Braverman, J. G. Dai, and Masakiyo Miyazawa, “Heavy traffic approximation for the stationary distribution of a generalized Jackson network: the BAR approach", Stochastic Systems, 7, 143-196, 2017.

3. Anton Braverman and J. G. Dai, “Stein's method for steady-state diffusion approximations of M/Ph/n +M systems", Annals of Applied Probability, 27, 550-581, 2017.

4. J. G. Dai and Pengyi Shi, “A Two-Time-Scale Approach to Time-varying Queues in Hospital Inpatient Flow Management", Operations Research, 65, 514-536, 2017.

5. Anton Braverman, J. G. Dai and Jiekun Feng, “Stein's method for steady-state diffusion approximations: an introduction through the Erlang-A and Erlang-C models", Stochastic Systems, 6, 301-366, 2016.

6. P. Shi, M. Chou, J. G. Dai, D. Ding, and J. Sim, Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time, Management Science, 62, 1-28, 2016.

7. J. G. Dai, Masakiyo Miyazawa, and Jian Wu, “Decomposable stationary distribution of a multidimensional SRBM", Stochastic Processes and their Applications, 125, 1790-1820, 2015.

8. J. G. Dai, Masakiyo Miyazawa, and Jian Wu, “A multi-dimensional SRBM: Geometric views of its product form stationary distribution", Queueing Systems, 78, 313-335, 2014. This version has an extra appendix (D) on the equivalence of various versions of basic adjoint relationship.

9. J. G. Dai, A. B. Dieker, and Xuefeng Gao, Validity of heavy-traffic steady-state approximations in many-server queues with abandonment, Queueing Systems, 78, 1-29, 2014.

10. J. G. Dai and Dacheng Yao, Brownian inventory models with convex holding cost: Part 2 discount-optimal controls, Stochastic Systems, 3, 500-573, 2013.

11. J. G. Dai and Dacheng Yao, Brownian inventory models with convex holding cost: Part 1 average-optimal controls, Stochastic Systems, 3, 442-449, 2013.

12. Shuangchi He and J. G. Dai, Many-server queues with customer abandonment: numerical analysis of their diffusion models, Stochastic Systems, 3, 96-147, 2013.

13. J. G. Dai and Masakiyo Miyazawa, Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures, Queueing Systems, 74, 181-217, 2013.

14. J. G. Dai and Shuangchi He, Many-Server Queues with Abandonment: A Survey of Diffusion and Fluid Approximations, Journal of Systems Science and Systems Engineering, 21, 1-36, 2012.

15. J. G. Dai and J. Michael Harrison, “Reflecting Brownian motion in three dimensions: A new proof of sufficient conditions for positive recurrence", Mathematical Methods for Operations Research, 75, 135-147, 2012.

16. J. G. Dai and M. Miyazawa, Reflecting Brownian motion in two dimensions: exact asymptotic for the stationary distribution, Stochastic Systems, Vol. 1, 146-208, 2011.

17. J. G. Dai and A. B. Dieker, Nonnegativity of solutions to the basic adjoint relationship for some diffusion processes, Queueing Systems, Vol. 68, 295-303, 2011.

18. J. G. Dai and Tolga Tezcan, State space collapse in many-server diffusion limits of parallel server systems, Mathematics of Operations Research, Vol. 36, 271-320, 2011.

19. Jiheng Zhang, J. G. Dai and Bert Zwart, Diffusion Limits of Limited Processor Sharing Queues, Annals of Applied Probability, Vol. 21, 745-799, 2011.

20. J. G. Dai, Shuangchi He and Tolga Tezcan, Many-server diffusion limits for G/Ph/n + GI queues, Annals of Applied Probability, Vol. 20, 1854-1890, 2010.

21. J. G. Dai and Shuangchi He, Customer abandonment in many-server queues, Mathematics of Operations Research, Vol. 35, 347-362, 2010.

22. Maury Bramson, J. G. Dai and J. Michael Harrison, Positive recurrence of reflecting Brownian motion in three dimensions, Annals of Applied Probability, Vol. 20, 753-783, 2010.

23. Tolga Tezcan and J. G. Dai, Dynamic Control of N-Systems with Many Servers: Asymptotic Optimality of a Static Priority Policy in Heavy Traffic, Operations Research, Vol. 58, 94-110, 2010.

24. Varun Gupta, J. G. Dai, Mor Harchol-Balter and Bert Zwart, The effect of higher moments of job size distribution on the performance of an M/G/s queueing system, Queueing Systems, Vol. 64, 5-49, 2010.

25. Jiheng Zhang, J. G. Dai and Bert Zwart, Law of Large Number limits of Limited Processor Sharing Queues, Mathematics of Operations Research, Vol. 34, 937-970, 2009.

26. J. G. Dai and Wuqin Lin, Asymptotic optimality of maximum pressure policies in stochastic processing networks, Annals of Applied Probability, 18, 2239-2299, 2008.

27. J. G. Dai and Tolga Tezcan, Optimal Control of Parallel Server Systems with Many Servers in Heavy Traffic, Queueing Systems, 59, 95-134, 2008.

28. Melda Ormeci, J. G. Dai and John Vande Vate, Impulse Control of Brownian Motion: The Constrained Average Cost Case, Operations Research, 56, 618-629, 2008.

29. J. G. Dai John J. Hasenbein and Bara Kim, Stability of Join-the-Shortest-Queue Networks, Queueing Systems, 57, 129-145, 2007.

30. Jiankui Yang, J. G. Dai, Jian-Gang You, and Hanqin Zhang, A simple proof of diffusion approximations for LBFS re-entrant lines, Operations Research Letters, Vol. 34, 199-204, 2006.

31. J. G. Dai and Wuqin Lin, Maximum Pressure Policies in Stochastic Processing Networks, Operations Research, Vol. 53, 197-218, 2005.

32. Junxia Chang, Hayriye Ayhan, J. G. Dai and Cathy H. Xia, Dynamic scheduling of a multiclass fluid model with transient overload, Queueing Systems, Vol. 48, 263-307, 2004.

33. J. G. Dai and Otis B. Jennings, Stabilizing queueing networks with setups, Mathematics of Operations Research, Vol. 29, 891-922, 2004.

34. K. S. Choi, J. G. Dai and J. S. Song, On measuring supplier performance under vendor-managed-inventory programs, Management Science and Operations Management, Vol. 6, 53-72, 2004.

35. J. G. Dai, John J. Hasenbein and John Vande Vate, Stability and instability of a two-station queueing network, Annals of Applied Probability, 14, 326-377, 2004.

36. J. G. Dai and Caiwei Li, Stabilizing batch processing networks, Operations Research, Vol. 51, 123-136, 2003.

37. Xinyang Shen, Hong Chen, J. G. Dai and Wanyang Dai, The Finite Element Method for Computing the Stationary Distribution of an SRBM in a Hypercube with Applications to Finite Buffer Queueing Networks, Queueing Systems, Vol. 42, 33-62, 2002.

38. J. G. Dai and G. Weiss, A fluid heuristic for minimizing makespan in job-shops, Operations Research, Vol. 50, 692-707, 2002.

39. F. Avram, J. G. Dai and J. J. Hasenbein, Explicit solutions for vibrational problems in the quadrant. Queueing Systems, Vol. 37, 261-291, 2001.

40. M. Bramson and J. G. Dai, Heavy traffic limits for some queueing networks, Annals of Applied Probability, Vol. 11, 49-90, 2001.

41. J. G. Dai, J. H. Vande Vate, The Stability of Two-Station Multitype Fluid Networks, Operations Research, 48, 721-744, 2000.

42. J. G. Dai and W. Dai, A heavy traffic limit theorem for a class of open queueing networks with infinite buffers, Queueing Systems, Vol. 32, 5-40, 1999.

43. J. G. Dai, J. J. Hasenbein and J. H. Vande Vate, Stability of a Three-Station Fluid Network, Queueing Systems, Vol. 33, 293-325, 1999.

44. J. G. Dai, D. H. Yeh and C. Zhou, The QNET method for re-entrant queueing networks with priority disciplines, Operations Research, 45, 610-623, 1997.

45. J. Banks and J. G. Dai, Simulation studies of multiclass queueing networks, IIE Transactions, 29, 213-219, 1997.

46. J. G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks, Annals of Applied Probability, 6, 751-757, 1996.

47. J. G. Dai and G. Weiss, Stability and instability of fluid models for re-entrant lines, Mathematics of Operations Research, 21, 115-134, 1996.

48. J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Transactions on Automatic Control, 40, 1889-1904, 1995.

49. J. G. Dai and T. G. Kurtz, A multiclass station with Markovian feedback in heavy traffic, Mathematics of Operations Research, 20, 721-742, 1995.

50. J. G. Dai, On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models, Annals of Applied Probability, 5, 49-77, 1995.

51. J. G. Dai and R. J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in a convex polyhedron. Theory of Probability and its Applications, special invited paper, 40, 3-53, 1995. (In Russian, also appeared in the SIAM translation journal of the same name.)

52. J. G. Dai and V. Nguyen, On the convergence of multiclass queueing networks in heavy traffic, Annals of Applied Probability, 4, 26-42, 1994.

53. J. G. Dai, V. Nguyen and M. I. Reiman, Sequential bottleneck decomposition: an approximation method for open queueing networks, Operations Research, 42, 119-136, 1994.

54. J. G. Dai and J. M. Harrison, The QNET method for two-moment analysis of closed manufacturing systems, Annals of Applied Probability, 3, 968-1012, 1993.

55. J. G. Dai and Y. Wang, Nonexistence of Brownian models of certain multiclass queueing networks, Queueing Systems: Theory and Applications, 13, 41-46, 1993.

56. J. G. Dai and J. M. Harrison, Reflected Brownian motion in an orthant: numerical methods for steady-state analysis, Annals of Applied Probability, 2, 65-86, 1992.

57. J. G. Dai and J. M. Harrison, Steady-state analysis of RBM in a rectangle: numerical methods and a queueing application, Annals of Applied Probability, 1, 16-35, 1991.